Abstract
This work involves surface analysis by nuclear techniques, which are non-destructive, and computer simulation. The “energy analysis” method for nuclear reaction analysis is used. Energy spectra are computer simulated and compared to experimental data, giving target composition and concentration profile information. Measured values are presented for the differential cross-section of the 12C(d,p0)13C reaction in the deuteron energy range 0.81–2.07MeV for laboratory detection angles of 165° and 135°, using self-supported two-layered targets consisting of high purity thin films of typically 13μg/cm2 natural carbon and 65μg/cm2 gold. The error in the absolute differential cross-section values is generally ∼6%. The method, using these values, is successfully applied to determination of uniform concentration profiles of 12C, along considerable depths, for a thick flat target of high purity pyrolitic graphite. It is characterised a thin surface film of carbon on a thick flat quartz target. Uniform concentration profiles of 16O are also obtained from (d,p) and (d,α) reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.