Abstract
Movement and muscle control are crucial for the survival of all free-living organisms. This study aimed to explore differential patterns of cortical and subcortical activation across different stages of muscle control using functional magnetic resonance imaging (fMRI). An event-related design was employed. In each trial, participants (n = 10) were instructed to gently press a button with their right index finger, hold it naturally for several seconds, and then relax the finger. Neural activation in these temporally separated stages was analyzed using a General Linear Model. Our findings revealed that a widely distributed cortical network, including the supplementary motor area and insula, was implicated not only in the pressing stage, but also in the relaxation stage, while only parts of the network were involved in the steady holding stage. Moreover, supporting the direct/indirect pathway model of the subcortical basal ganglia, their substructures played distinct roles in different stages of muscle control. The caudate nucleus exhibited greater involvement in muscle contraction, whereas the putamen demonstrated a stronger association with muscle relaxation; both structures were implicated in the pressing stage. Furthermore, the subthalamic nucleus was exclusively engaged during the muscle relaxation stage. We conclude that even the control of simple muscle movements involves intricate automatic higher sensory-motor integration at a neural level, particularly when coordinating relative muscle movements, including both muscle contraction and muscle relaxation; the cortical and subcortical regions assume distinct yet coordinated roles across different stages of muscle control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.