Abstract

N-cadherin is a homophilic adhesion protein that remains expressed at mature excitatory synapses beyond its developmental role in synapse formation. We have investigated the transsynaptic activity of N-cadherin in regulating synapse function in rodent cultured hippocampal neurons using optical methods and electrophysiology. Interfering with N-cadherin in postsynaptic neurons reduces basal release probability (pr) at inputs to the neuron, and this transsynaptic impairment of release accompanies impaired vesicle endocytosis. Moreover, the loss of GluA2, which decreases pr by itself, occludes the effect of interfering with postsynaptic N-cadherin. The loss of postsynaptic N-cadherin activity, however, does not affect the compensatory upregulation of pr induced by activity silencing, while postsynaptic β-catenin deletion blocks this presynaptic homeostatic adaptation. Our findings suggest that postsynaptic N-cadherin plays a role in linking basal pre- and postsynaptic strengths to control the level of pr offset while the gain adjustment of pr requires a distinct transsynaptic pathway involving β-catenin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.