Abstract

In optical coherence tomography (OCT), differential contrast can be generated by resonant nanoparticles using spectral multiplexing. Differential contrast can be of interest for medical applications for improving detection specificity of structures with low endogenous contrast. Differential contrast has been shown using OCT systems with one bandwidth; how- ever, this requires post-processing that is time consum- ing and reduces image resolution. In this study, we used a dual-band OCT prototype system with two far separated bandwidths in the clinically relevant optical window, and in search for the optimal differential contrast-generating particles for this prototype system, three different gold nanorods (AuNR) samples were investigated. The samples with different particle volume, aspect ratio, and absorption-maximum were imaged in a highly scattering phantom and on chicken muscle. In vitro, differential contrast was observed for the nanorods large (NRL) sample having the absorption- maximum within one bandwidth of the OCT and an average length of 75 nm. For the smaller AuNR (48 nm length) with comparable absorption-maximum, the obtained signal intensities were too low for being visible, although differences in signal intensities be- tween both bandwidths could be measured. NRL optimal concentration for differential contrast using this prototype system is between 100 and 500 lg Au/mL (0.51-2.54 mM). These results demonstrate the potential of real-time imaging of differential contrast in dual-band OCT and motivate in vivo application of plasmon resonant AuNR in order to improve the detection sensitivity for structures that are difficult to identify by OCT such as small blood vessels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.