Abstract

Profilins are thought to be involved in the control of actin dynamics in eukaryotic cells. In accordance with this concept, profilin was found to be colocalized with the cortical microfilament webs in leading lamellae of locomoting and spreading fibroblasts. However, so far, there is little information on the distribution of profilin in other cell types. In this study, we report on the colocalization of profilin with various microfilament suprastructures in the epithelial cell line PtK2. This cell line, which is derived from rat kangaroo, contains a profilin sharing an N-terminal epitope with bovine and human profilin I, as seen by immunoblotting with monoclonal antibodies. By using immunofluorescence in conjunction with conventional fluorescence microscopy and confocal laser-scanning microscopy, we found profilin in ruffling areas of the peripheral lamellae and nascent stress fibers of spreading cells, whereas the peripheral belts of stationary cells growing in epithelioid sheets lacked profilin staining. In these cells, profilin was primarily distributed in a fine reticular or vesicular network that was not related to the microfilament system. Conspicuously low levels of profilins was not related to the contractile ring of mitotic cells. This was found for different fixation protocols and antibodies of the IgG and IgM type, respectively, indicating that lack of staining of the cleavage furrow was not due to antibody penetration problems. Depending on the fixation protocol, the nuclear matrix appeared strongly positive or negative for profilin. Cells microinjected with birch pollen profilin and labeled with a birch profilin-specific monoclonal antibody corroborated the results obtained with the endogeneous protein: The injected profilin was targeted to the cortical web and to nascent stress fibers of spreading cells but not to the cleavage ring of mitotic cells. These results suggest that high concentrations of a profilin I homologue are preferentially located with those microfilament suprastructures in PtK2 cells that are subject to rapid modulation by external signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call