Abstract

Differential cognitive trajectories in Alzheimer's disease (AD) may be predicted by biomarkers from multiple domains. In a longitudinal sample of AD and AD-related dementias patients (n = 312), we tested whether 1) change in brain morphometry (ventricular enlargement) predicts differential cognitive trajectories, 2) further risk is contributed by genetic (Apolipoprotein E [APOE] ɛ4+) and vascular (pulse pressure [PP]) factors separately, and 3) the genetic + vascular risk moderates this pattern. We applied a dynamic computational approach (parallel process models) to test both concurrent and change-related associations between predictor (ventricular size) and cognition (executive function [EF]/attention). We then tested these associations as stratified by APOE (ɛ4-/ɛ4+), PP (low/high), and APOE+ PP (low/intermediate/high) risk. First, concurrently, higher ventricular size predicted lower EF/attention performance and, longitudinally, increasing ventricular size predicted steeper EF/attention decline. Second, concurrently, higher ventricular size predicted lower EF/attention performance selectively in APOEɛ4+ carriers, and longitudinally, increasing ventricular size predicted steeper EF/attention decline selectively in the low PP group. Third, ventricular size and EF/attention associations were absent in the high APOE+ PP risk group both concurrently and longitudinally. As AD progresses, a threshold effect may be present in which ventricular enlargement in the context of exacerbated APOE+ PP risk does not produce further cognitive decline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call