Abstract

The biological response to electrodes implanted in the brain has been a long-standing barrier to achieving a stable tissue device-interface. Understanding the mechanisms underlying this response could explain phenomena including recording instability and loss, shifting stimulation thresholds, off-target effects of neuromodulation, and stimulation-induced depression of neural excitability. Our prior work detected differential expression in hundreds of genes following device implantation. Here, we extend upon that work by providing new analyses using differential co-expression analysis, which identifies changes in the correlation structure between groups of genes detected at the interface in comparison to control tissues. We used an "eigengene" approach to identify hub genes associated with each module. Our work adds to a growing body of literature which applies new techniques in molecular biology and computational analysis to long-standing issues surrounding electrode integration with the brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call