Abstract

Rapid progress in optical atomic clock performance has advanced the frontiers of timekeeping, metrology and quantum science1-3. Despite considerable efforts, the instabilities of most optical clocks remain limited by the local oscillator rather than the atoms themselves4,5. Here we implement a 'multiplexed' one-dimensional optical lattice clock, in which spatially resolved strontium atom ensembles are trapped in the same optical lattice, interrogated simultaneously by a shared clock laser and read-out in parallel. In synchronous Ramsey interrogations of ensemble pairs we observe atom-atom coherence times of 26 s, a 270-fold improvement over the measured atom-laser coherence time, demonstrate a relative instability of [Formula: see text] (where τ is the averaging time) and reach a relative statistical uncertainty of 8.9 × 10-20 after 3.3 h of averaging. These results demonstrate that applications involving optical clock comparisons need not be limited by the instability of the local oscillator. We further realize a miniaturized clock network consisting of 6 atomic ensembles and 15 simultaneous pairwise comparisons with relative instabilities below [Formula: see text], and prepare spatially resolved, heterogeneous ensemble pairs of all four stable strontium isotopes. These results pave the way for multiplexed precision isotope shift measurements, spatially resolved characterization of limiting clock systematics, the development of clock-based gravitational wave and dark matter detectors6-12 and new tests of relativity in the lab13-16.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.