Abstract

1. Microelectrode recording techniques were used to study the effects of several potassium channel blockers which are considered to be Class III antiarrhythmic compounds. The effects of (+)-sotalol, UK-66,914, UK-68,798 and E-4031 on action potential duration (APD) were determined in guinea-pig isolated papillary muscles. The compounds were evaluated under normoxic or hypoxic/ischaemic conditions at 36.5 degrees C and compared to glibenclamide, which is considered to be a blocker of ATP-dependent potassium channels. Prolongation of action potential duration at 90% repolarization (APD90) was taken as an indirect measure of potassium channel blockade. 2. Under normoxic conditions, the Class III compounds prolonged APD in a concentration-dependent manner. According to EC15 values, the order of potency of the Class III compounds was found to be UK-68,798 > E-4031 > UK-66,914 > (+)-sotalol. Glibenclamide did not significantly prolong APD90 under normoxic conditions. 3. Perfusion with an experimental hypoxic or ischaemic bathing solution produced qualitatively similar effects on action potentials. Over a period of 20-25 min in either of the experimental solutions, there was a small decrease in action potential amplitude (APA) and a prominent shortening of APD. The ischaemic solution also depolarized the resting membrane potential by about 15 mV. 4. (+)-Sotalol and UK-66,914 did not reverse the shortening of APD induced by perfusion with hypoxic Krebs solution. High concentrations of glibenclamide (10 microM) and UK-68,798 (30 and 60 microM) partially reversed the hypoxia-shortened APD. Glibenclamide was more potent and exhibited a greater time-dependent action than UK-68,798. 5. During experimental ischaemia, the Class III compound E-4031 (10 microM, n = 7) produced small, but significant, increases in the APD90 (11 +/-3 ms after 20 min) which were not clearly time-dependent(14 +/- 4 ms after 30 min). UK-68,798 (10 microM) also produced a small, but insignificant, increase in APD90(12 =/-6 ms at 20 min, n = 4). Higher concentrations of UK-68,798 (30 and 60 microM, n = 4) did not produce a consistently significant increase in APD90 during ischaemia: significance was only attained after 20 min in the presence of 60 microM UK-68,798 (24 +/- 12 ms). However, in marked contrast to the effects of the Class III compounds, glibenclamide (10 microM) produced large time-dependent increases in ischaemic APD90 (34 +/- 11 ms at 7 min, n = 9) which were significant 15 min or more after drug addition(52 +/- 12 ms at 20 min, n = 7; 74 +/- 5 ms at 30 min, n = 6).6. The present microelectrode data suggest that blockers of ATP-dependent potassium channels, such as glibenclamide, might prove to be more effective than Class III compounds against ischaemia-induced shortening of cardiac action potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.