Abstract
The X-type strike-slip fault system and weathering crust karst fracture-cave and channel reservoirs were developed in the Halahatang area of the northern Tarim Basin. However, the relationship between the reservoir and the strike-slip fault remains controversial. Based on the core data, and taking an NE-striking strike-slip fault as an example, this paper dissects the karst reservoir from wells along the strike-slip fault damage zone and analyzes the control of scales, properties, and segmentation styles of strike-slip faults on karst reservoirs. The results show that (1) the scale of the strike-slip fault controls the distribution of the reservoir—the wider the fault damage zone, the wider the fracture-cave reservoirs; (2) the transtensional segments of the strike-slip fault are more likely to produce karstification, and the buried-hill area and the interbedded area are controlled by different hydrodynamic conditions to form different types of karst reservoirs; (3) six different parts of the strike-slip fault are conducive to the formation scale of fault fracture zones. This research provides new insight into recognizing karst reservoirs within strike-slip fault damage zones, which can be further applied to predict karst reservoirs controlled by strike-slip faults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.