Abstract

During mammalian secondary palate formation sagittal growth of the lower face has been shown to be more rapid than that of the upper face, and the tongue and mandible extend beneath the primary palate. In order to identify factors contributing to this differential growth pattern, cellular and morphologic growth of the major cartilages of the upper and lower facial regions were studied in radioautographic sections labeled with tritiated thymidine. Evaluation of cell-density recordings, labeling indices, and structural dimensions revealed significant differences between Meckel's cartilage in the lower face, and the nasal cartilage and anterior cranial base cartilage in the upper face. After formation of the precartilaginous blastema, labeling indices were high in Meckel's cartilage (20-30%), but very low in the nasal cartilage and the anterior cranial base (0-2%). During secondary palate formation the volume of Meckel's cartilage increased more rapidly than the other cartilages and its growth was primarily in the sagittal direction. Between days 15 and 17, the increase in the length of Meckel's cartilage (165%) was approximately twice as great as the increase in the combined length of the nasal cartilage and the anterior cranial base (77%). During this period induction of cleft palate with some teratogens has been shown to severely retard growth of Meckel's cartilage and produce mandibular retrognathia that contributes to delayed elevation of the palatal shelves. Therefore, extensive cell proliferation in Meckel's cartilage, during a period of limited proliferation in other craniofacial cartilages, appears to contribute to its rapid growth and its differential sensitivity to growth inhibition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call