Abstract
A multi-electrode differential capacitive sensing circuit is designed and realized for the read-out of a multi-axis capacitive force–torque sensor. The sensing circuit is based on a differential relaxation oscillator, to which multiple capacitances can be connected. For selecting the capacitances, reprogrammable asynchronous logic can be used, such that any desired combination of differential or single-ended capacitance can be determined. The noise performance of the oscillator in the system is analysed and measured, revealing the influence of individual component values on the noise performance of the system. Capacitance measurements show that a deviation of 0.9fF is obtained at an acquisition rate of 225Hz including auto-calibration, which is mainly limited by the quantization noise due to the frequency counter. The lowest obtained deviation is 0.12fF at an acquisition rate of 3.5Hz. The system is successfully interfaced to the multi-axis capacitive force–torque for the read-out of six capacitor configurations at an acquisition rate of 38Hz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.