Abstract

The use of a differential capacitance technique for characterizing the relaxation-induced defect states in Schottky diodes has been studied. Based on a proposed equivalent circuit including the effect of potential drop across the carrier-depletion layer, a simple equation of capacitance at different voltages and frequencies is derived and compared with experimental data obtained from relaxed In/sub 0.2/Ga/sub 0.8/As/GaAs samples. It is shown that the carrier-depletion layer will introduce capacitance dispersion over frequency like traps; from it the device's geometric parameters, the resistance of the carrier-depletion layer and the ionization energy of the deep level that gives rise to this resistance can be obtained. The relation between the low-frequency capacitance and reverse voltage can be explained well by the depletion of the free carriers between the Schottky depletion and the carrier-depletion layer. The relaxation-induced traps are believed to be at 0.535 and 0.36 eV, respectively, in the GaAs and In/sub 0.2/Ga/sub 0.8/As regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.