Abstract

Aiming at the problem of the fiber-optic photoacoustic (PA) sensor being easily disturbed by external vibration and noise, a differential cantilever enhanced fiber-optic PA sensor is proposed for diffusion gas detection. The sensor comprises two PA tubes with the same structure and a pair of differential interferometric cantilevers. The two PA tubes are symmetrically distributed. The laser is incident on the PA tube as the signal channel to excite the PA pressure wave. Another tube without incident laser is used as the reference channel to suppress external disturbance. The external interference signals and PA signals superimposed with disturbance are detected by the differential cantilevers from the two channels. The signals are simultaneously restored by a single white-light interferometry demodulator, which multiplexed the spectral frequency domain of the superimposed interference spectrum. The experimental results show that the suppression effect of the differential cantilever enhanced PA sensor on ambient noise is improved by 80%, compared to the traditional single-cantilever sensor. The external cofrequency disturbance is suppressed by 20.9 dB. The minimum detection limit to acetylene (C2H2) downs to about 60 ppb with an integration time of 100 s. The sensor has excellent antivibration and electromagnetic interference ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call