Abstract
We present an axiomatic approach to finite- and infinite-dimensional differential calculus over arbitrary infinite fields (and, more generally, suitable rings). The corresponding basic theory of manifolds and Lie groups is developed. Special attention is paid to the case of mappings between topological vector spaces over non-discrete topological fields, in particular ultrametric fields or the fields of real and complex numbers. In the latter case, a theory of differentiable mappings between general, not necessarily locally convex spaces is obtained, which in the locally convex case is equivalent to Keller's C k c -theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.