Abstract
The differential calculus, including formalism of linear differential operators and the Chevalley–Eilenberg differential calculus, overN-graded commutative rings and onN-graded manifolds is developed. This is a straightforward generalization of the conventional differential calculus over commutative rings and also is the case of the differential calculus over Grassmann algebras and onZ2-graded manifolds. We follow the notion of anN-graded manifold as a local-ringed space whose body is a smooth manifoldZ. A key point is that the graded derivation module of the structure ring of graded functions on anN-graded manifold is the structure ring of global sections of a certain smooth vector bundle over its bodyZ. Accordingly, the Chevalley–Eilenberg differential calculus on anN-graded manifold provides it with the de Rham complex of graded differential forms. This fact enables us to extend the differential calculus onN-graded manifolds to formalism of nonlinear differential operators, by analogy with that on smooth manifolds, in terms of graded jet manifolds ofN-graded bundles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.