Abstract

We consider the algebra of N×N matrices as a reduced quantum plane on which a finite-dimensional quantum group ℋ acts. This quantum group is a quotient of [Formula: see text], q being an Nth root of unity. Most of the time we shall take N=3; in that case dim(ℋ)=27. We recall the properties of this action and introduce a differential calculus for this algebra: it is a quotient of the Wess–Zumino complex. The quantum group ℋ also acts on the corresponding differential algebra and we study its decomposition in terms of the representation theory of ℋ. We also investigate the properties of connections, in the sense of non commutative geometry, that are taken as 1-forms belonging to this differential algebra. By tensoring this differential calculus with usual forms over space-time, one can construct generalized connections with covariance properties with respect to the usual Lorentz group and with respect to a finite-dimensional quantum group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.