Abstract
After an introduction to some aspects of bidifferential calculus on associative algebras, we focus on the notion of a “symmetry” of a generalized zero curvature equation and derive Backlund and (forward, backward and binary) Darboux transformations from it. We also recall a matrix version of the binary Darboux transformation and, inspired by the so-called Cauchy matrix approach, present an infinite system of equations solved by it. Finally, we sketch recent work on a deformation of the matrix binary Darboux transformation in bidifferential calculus, leading to a treatment of integrable equations with sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.