Abstract

BackgroundThe trimeric envelope glycoproteins (Env) on the surface of HIV-1 virions are the targets for neutralizing antibodies (NAbs). No candidate HIV-1 immunogen has yet induced potent, broadly active NAbs (bNAbs). Part of the explanation may be that previously tested Env proteins inadequately mimic the functional, native Env complex. Trimerization and the proteolytic processing of Env precursors into gp120 and gp41 profoundly alter antigenicity, but soluble cleaved trimers are too unstable to serve as immunogens. By introducing stabilizing mutations (SOSIP), we constructed soluble, cleaved Env trimers derived from the HIV-1 subtype A isolate BG505 that resemble native Env spikes on virions both structurally and antigenically.ResultsWe used surface plasmon resonance (SPR) to quantify antibody binding to different forms of BG505 Env: the proteolytically cleaved SOSIP.664 trimers, cleaved gp120-gp41ECTO protomers, and gp120 monomers. Non-NAbs to the CD4-binding site bound only marginally to the trimers but equally well to gp120-gp41ECTO protomers and gp120 monomers, whereas the bNAb VRC01, directed to the CD4bs, bound to all three forms. In contrast, bNAbs to V1V2 glycan-dependent epitopes bound preferentially (PG9 and PG16) or exclusively (PGT145) to trimers. We also explored the antigenic consequences of three different features of SOSIP.664 gp140 trimers: the engineered inter-subunit disulfide bond, the trimer-stabilizing I559P change in gp41ECTO, and proteolytic cleavage at the gp120-gp41ECTO junction. Each of these three features incrementally promoted native-like trimer antigenicity. We compared Fab and IgG versions of bNAbs and validated a bivalent model of IgG binding. The NAbs showed widely divergent binding kinetics and degrees of binding to native-like BG505 SOSIP.664. High off-rate constants and low stoichiometric estimates of NAb binding were associated with large amounts of residual infectivity after NAb neutralization of the corresponding BG505.T332N pseudovirus.ConclusionsThe antigenicity and structural integrity of cleaved BG505 SOSIP.664 trimers render these proteins good mimics of functional Env spikes on virions. In contrast, uncleaved gp140s antigenically resemble individual gp120-gp41ECTO protomers and gp120 monomers, but not native trimers. Although NAb binding to functional trimers may thus be both necessary and sufficient for neutralization, the kinetics and stoichiometry of the interaction influence the neutralizing efficacy of individual NAbs.

Highlights

  • The trimeric envelope glycoproteins (Env) on the surface of HIV-1 virions are the targets for neutralizing antibodies (NAbs)

  • Effects of oligomerization on the antigenicity of Env trimers We compared antibody binding to the BG505 SOSIP.664 trimer, the corresponding disulfide-stabilized gp120-gp 41ECTO protomer, which has previously never been included in NAb binding studies, and the gp120 monomer

  • Effects of proteolytic cleavage and stabilizing mutations on antibody binding to Env trimers Recently, we showed that cleavage at the junction between gp120 and gp41ECTO strongly promotes a native-like structure of the BG505 SOSIP.664 gp140 trimer, as determined by negative-stain electron microscopy (EM), and that the compact, native-like trimer binds NAbs but not non-NAbs [23]

Read more

Summary

Introduction

The trimeric envelope glycoproteins (Env) on the surface of HIV-1 virions are the targets for neutralizing antibodies (NAbs). CD4, on the target-cell surface is ligated by Env trimers, a site for co-receptor binding is induced, allowing Env interactions with CCR5 or CXCR4. These events trigger conformational rearrangements and a refolding of Env, which drive the fusion of the viral and cellular membranes, enabling the viral core, which contains the genetic material, to enter the cytoplasm. All of Env is not as variable and one approach to immunogen design is to create soluble, recombinant antigenic mimics of the functional Env trimers with the goal of focusing antibody responses on conserved neutralization epitopes [4,5,6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call