Abstract
We present a set of model-independent differential equations to analyze isothermal titration calorimetry (ITC) experiments. In contrast with previous approaches that begin with specific assumptions about the number of binding sites and the interactions among them (e.g., sequential, independent, cooperative), our derivation makes more general assumptions, such that a receptor with multiple sites for one type of ligand species (homotropic binding) can be studied with the same analytical expression. Our approach is based on the binding polynomial formalism, and the resulting analytical expressions can be extended to account for any number of binding sites and any type of binding interaction among them. We refer to the set of model-independent differential equations to study ITC experiments as a differential binding model (DBM). To demonstrate the flexibility of our DBM, we present the analytical expressions to study receptors with one or two binding sites. The DBM for a receptor with one site is equivalent to the Wiseman isotherm but with a more intuitive representation that depends on the binding polynomial and the dimensionless parameter c = K·MT, where K is the binding constant and MT the total receptor concentration. In addition, we show how to constrain the general DBM for a receptor with two sites to represent sequential, independent, or cooperative binding interactions between the sites. We use the sequential binding model to study the binding interaction between Gd(III) and citrate anions. In addition, we simulate calorimetry titrations of receptors with positive, negative, and noncooperative interactions between the two binding sites. Finally, we derive a DBM for titrations of receptors with n-independent binding sites.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.