Abstract

It is important to find an efficient design-for-testability methodology that satisfies both security and testability, although there exists an inherent contradiction between security and testability for digital circuits. In our previous work, we reported a secure and testable scan design approach by using extended shift registers that are functionally equivalent but not structurally equivalent to shift registers, and showed a security level by clarifying the cardinality of those classes of shift register equivalents (SR-equivalents). However, SR-equivalents are not always secure for scan-based side-channel attacks. In this paper, we consider a scan-based differential-behavior attack and propose several classes of SR-equivalent scan circuits using dummy flip-flops in order to protect the scan-based differential-behavior attack. To show the security level of those SR-equivalent scan circuits, we introduce a differential-behavior equivalent relation and clarify the number of SR-equivalent scan circuits, the number of differential-behavior equivalent classes and the cardinality of those equivalent classes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.