Abstract

A novel strategy for the design of common-mode suppressed differential (or balanced) filters, based on stepped impedance resonators (SIRs), is presented. The differential mode band pass response is achieved by coupling parallel LC resonators, implemented by a patch capacitance and a grounded inductance, through admittance inverters. Such inverters are implemented by means of 90 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</sup> transmission lines, whereas the grounded inductances are implemented by means of mirrored stepped impedance resonators (SIR). For the differential mode, the symmetry plane is a virtual ground, the wide strip section of the SIR is effectively grounded, and the SIR behaves as a shunt inductance. However, for the common mode, where the symmetry plane is an open (magnetic wall), the SIR is a shunt connected series resonator, providing a transmission zero, which can be used for the rejection of the common mode in the differential filter pass band. The equivalent circuit model of the proposed structure is validated through electromagnetic simulation and experimental data of order-3 and −5 Chebyshev differential bandpass filters. Moreover, guidelines for the design of balanced filters with wide bandwidths, including ultrawideband (UWB) bandpass filters, are provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call