Abstract

Pleckstrin homology (PH) domains are recognized in more than 100 different proteins, including mammalian phosphoinositide-specific phospholipase C (PLC) isozymes (isotypes beta, gamma, and delta). These structural motifs are thought to function as tethering devices linking their host proteins to membranes containing phosphoinositides or beta gamma subunits of heterotrimeric GTP binding (G) proteins. Although the PH domains of PLC-delta and PLC-gamma have been studied, the comparable domains of the beta isotypes have not. Here, we have measured the affinities of the isolated PH domains of PLC-beta 1 and -beta 2 (PH-beta 1 and PH-beta 2, respectively) for lipid bilayers and G-beta gamma subunits. Like the intact enzymes, these PH domains bind to membrane surfaces composed of zwitterionic phosphatidylcholine with moderate affinity. Inclusion of the anionic lipid phosphatidylserine or phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and inclusion of G-beta gamma subunits had little affect on their membrane affinity. In contrast, binding of PLC-delta 1 or its PH domain was highly dependent on PI(4,5)P2. We also determined whether these domains laterally associate with G-beta gamma subunits bound to membrane surfaces using fluorescence resonance energy transfer. Affinities for G-beta gamma were in the following order: PH-beta 2 >/= PH-beta 1 > PH-delta 1; the affinities of the native enzyme were as follows: PLC-beta 2 >> PLC-delta 1 > PLC-beta 1. Thus, the PH domain of PLC-beta 1 interacts with G-beta gamma in isolation, but not in the context of the native enzyme. By contrast, docking of the PH domain of PLC-beta2 with G-beta gamma is comparable to that of the full-length protein and may play a key role in G-beta gamma recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.