Abstract

Cyclosporin, FK-506 and rapamycin have similar but distinct modes of interaction with cyclophilins, calcineurins and transcription factors. These immunosuppressive drugs have also been shown to inhibit cytotoxic and inflammatory responses in macrophage. Therefore, we evaluated the mechanism of action of these drugs on iNOS and COX-2 expression by macrophages, the products of which (NO and PGE2) have cytotoxic and proinflammatory activities. The murine macrophage cell line RAW 264.7 was grown as monolayer cultures. The effects of pharmacologically relevant concentrations of cyclosporin, rapamycin and FK-506 were evaluated in the presence and absence of lipopolysaccharide (LPS) which is a known inducer of iNOS and COX-2. Subsequently the expression of iNOS and COX-2 were analyzed by Western and Northern analysis. The production of NO and PGE2 were assayed by Greiss and RIA respectively. Cyclosporin (1-5 microg/ml) and rapamycin (1.0-10 nM) but not FK-506 (5-10 nM) inhibited both iNOS and COX-2 expression at mRNA level which led to significant inhibition of NO and PGE2 production. These studies characterize differential mechanistic capacity of the immunophilin-binding immunosuppressive drugs (comparable to hydrocortisone) to inhibit both iNOS and COX-2 expression. Inhibition of iNOS and COX-2 mRNA accumulation by cyclosporin and rapamycin seem to be distinct. These studies also highlight potential anti-inflammatory properties of these drugs in addition to their known immunosuppressive activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.