Abstract
Psychrophilic bacteria can survive in a unique living environment. To explore the mechanism of low temperature adaptation and the physiological function of thermophilic metabolic genes. Serratia marcescens strain F13 stored in microbial laboratory was cultured at 5∘C, 10∘C and 25∘C respectively, and the obtained strains were sequenced by high-throughput transcriptome. Serratia marcescens strain CAV1761 was used as the reference strain. The data produced by transcriptome sequencing were statistically analyzed by biostatistics software such as soapnuke, soap and edger. The differentially expressed genes were found based on the gene expression, and analyzed by Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The results showed that there were 718 differential genes in F13-10 vs F13-5 comparison group, 1614 differential genes in F13-25 vs F13-5 comparison group and 1636 differential genes in F13-25 vs F13-10 comparison group. GO function enrichment analysis showed that the GO term mainly enriched by different genes in the three comparison groups was mostly related to the migration and transport of cellular or subcellular components, cell localization and transmembrane transporter activity, as well as cilia or flagella dependent cell movement. In the enrichment analysis of KEGG pathway, the three comparison groups all enriched the largest number of differential genes in the branch pathway of KEGG metabolism, followed by the branch pathway of environmental information processing. In F13-10 vs F13-5, the differential genes were mainly concentrated in 20 pathways such as ATP-binding cassette transport (ABC) transporters, thiamine metabolism and flagella assembly; In F13-25 vs F13-5, the differential genes are mainly concentrated in 20 pathways, such as (ABC) transporters, arginine and proline metabolism, two-component system and so on; In F13-25 vs F13-10, the differential genes are mainly concentrated in 20 pathways such as various types of glycan synthesis, two-component system and arginine metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Technology and health care : official journal of the European Society for Engineering and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.