Abstract

The citrus red mite, Panonychus citri (McGregor) (Trombidiformes: Tetranychidae), a highly destructive pest in citrus groves around the world, has developed resistance to many registered acaricides. Hexythiazox is a selective miticide that has been widely used to control citrus mites in a variety of crops. Forty-six cytochrome P450 mono-oxygenase genes related to general pesticide resistance in other insect species were obtained from the transcriptomes of the hexythiazox-resistant (RR) and hexythiazox-susceptible (SS) strains of P. citri and divided into 4 clans, 15 families and 24 subfamilies. Sequence analyses of each CYP resulted in detection of 3 mutationsin the CYP307A1 gene (841-A to C, 1395-T to C, 1491-T to C) that differed between the 2 strains. Only the change at an amino acid position (278-lysine to glutamine) resulted in a sense mutation. One SNP site was also detected in CYP381A2 (40-A to T) causing a sense amino acid mutation (14-threonine to serine). Seven of these P450s belonged to the CYP2 clan, CYP3 clan and CYP4 clan based on digital gene expression (DGE) library sequencing with a |log2 ratio| value greater than 2, but there were no significant differences revealed by qRT-PCR analysis. This study provides essential information for future research on the hexythiazox-resistance mechanism of P. citri. More methods are needed to further elucidate the molecular mechanisms of resistance to hexythiazox in P. citri.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call