Abstract

This paper describes new Round Reduction analysis attacks on an Advanced Encryption Standard (AES) implementation by laser fault injection. The previous round reduction attacks require both of spatial and temporal accuracies in order to execute only one, two or nine rounds. We present new attacks by more flexible fault injection conditions. Our experiments are carried out on an 8-bit microcontroller which embeds a software AES with pre-calculated round keys. Faults are injected either into the round counter itself or into the reference of its total round number. The attacks may result to the use of a faulty round key at the last one or two executed rounds. The cryptanalysis of the obtained round-reduced faulty ciphertexts resorts to the differentiation techniques used by Differential Fault Analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.