Abstract

High-throughput sequencing of cDNA (RNA-seq) is used extensively to characterize the transcriptome of cells. Many transcriptomic studies aim at comparing either abundance levels or the transcriptome composition between given conditions, and as a first step, the sequencing reads must be used as the basis for abundance quantification of transcriptomic features of interest, such as genes or transcripts. Various quantification approaches have been proposed, ranging from simple counting of reads that overlap given genomic regions to more complex estimation of underlying transcript abundances. In this paper, we show that gene-level abundance estimates and statistical inference offer advantages over transcript-level analyses, in terms of performance and interpretability. We also illustrate that the presence of differential isoform usage can lead to inflated false discovery rates in differential gene expression analyses on simple count matrices but thatthis can be addressed by incorporating offsets derived from transcript-level abundance estimates. We also show that the problem is relatively minor in several real data sets. Finally, we provide an R package ( tximport) to help users integrate transcript-level abundance estimates from common quantification pipelines into count-based statistical inference engines.

Highlights

  • Quantification and comparison of isoform- or gene-level expression based on high throughput sequencing reads from cDNA (RNA-seq) are arguably among the most common tasks in modern computational molecular biology

  • Accurate transcript-level estimation and inference play an important role in deriving appropriate genelevel results, and it is imperative to continue improving abundance estimation and inference methods applicable to individual transcripts, since misestimation can propagate to the gene level

  • We have shown that when testing for changes in overall gene expression (DGE), traditional gene counting approaches may lead to an inflated false discovery rate compared to methods aggregating transcript-level TPM values or incorporating correction factors derived from these, for genes where the relative isoform usage differs between the compared conditions

Read more

Summary

30 Dec 2015

Any reports and responses or comments on the article can be found at the end of the article. This article is included in the RPackage gateway. This article is included in the Bioconductor gateway. The Discussion section has been extended, mainly to include a discussion of differential expression analysis methods incorporating variance estimates. The interest lies in comparing the transcriptional output between different conditions, and most RNA-seq studies can be classified as either: 1) differential gene expression (DGE) studies, where the overall transcriptional output of each gene is compared between conditions; 2) differential transcript/exon usage (DTU/DEU) studies, where the composition of a gene’s isoform abundance spectrum is compared between conditions, or 3) differential transcript expression (DTE) studies, where the interest lies in whether individual transcripts show differential expression between conditions. DTE analysis results can be represented on the individual transcript level, or aggregated to the gene level, e.g., by evaluating whether at least one of the isoforms shows evidence of differential abundance

Introduction
Discussion
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.