Abstract

Healthy adult ageing of the human neuromuscular system is comprised of changes that include atrophy, weakness and slowed movements with reduced spinal motor neurone output expressed by lower motor unit discharge rates (MUDRs). The latter observation has been obtained mostly from hand and lower limb muscles. The purpose was to determine the extent to which elbow flexor and extensor contractile properties, and MUDRs in six old (83 +/- 4 years) and six young (24 +/- 1 years) men were affected by age, and whether any adaptations were similar for both muscle groups. Maximal isometric voluntary contraction (MVC), voluntary activation, twitch contractile properties, force-frequency relationship and MUDRs from sub-maximal to maximal intensities were assessed in the elbow flexors and extensors. Both flexor and extensor MVCs were significantly (P < 0.05) less (approximately 42% and approximately 46% respectively) in the old than in the young. Contractile speeds and the force-frequency relationship did not show any age-related differences (P > 0.05). For the elbow flexors contraction duration was approximately 139 ms and for the extensors it was approximately 127 ms for both age groups (P > 0.05). The mean MUDRs from 25% MVC to maximum were lower (approximately 10% to approximately 36%) in the old than in the young (P < 0.01). These age-related differences were larger for biceps (Cohen's d = 8.25) than triceps (Cohen's d = 4.79) brachii. Thus, at least for proximal upper limb muscles, mean maximal MUDR reductions with healthy adult ageing are muscle specific and not strongly related to contractile speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call