Abstract

Integration of molecule-capped gold nanoparticles (AuNP) into nanoelectronic devices requires detailed knowledge about the AuNP-electrode interface. Here, we report the pH-dependent adsorption of amine or carboxylic acid-terminated gold nanoparticles on platinum or gold/palladium (30% Pd) alloy, respectively. We synthesized amine-terminated AuNP, applying a new solid phase supported approach, as well as AuNP exhibiting carboxylic acid as terminal groups. The pH-induced agglomeration of the synthesized AuNP was investigated by UV-vis, DLS, and ζ-potential measurements. Depending on the pH and the ionic strength of the AuNP solution a preferential adsorption on the different metals occurred. Thereby, we demonstrate that by choosing the appropriate functional group and adjusting the pH as well as the ionic strength a directed binding can be achieved, which is an essential prerequisite for applications of these particles in nanoelectronics. These findings will pave the way for a controlled designing of the interface between molecule-capped AuNP and metallic electrodes for applications in nanoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.