Abstract

During the initial assembly of the olfactory pathway, the behavior of olfactory axons changes as they grow from the olfactory epithelium toward the telencephalic vesicle. The axons exit the epithelium singly or in small fascicles, and their growth cones are simple and bullet-shaped. Outside the epithelium, they make a sharp dorsal turn and fasciculate into a single nerve; the growth cones remain simple. Upon entering the ventromedial telencephalon, the axons defasciculate, branch extensively, and end in complex, lamellate growth cones which extend toward the ventrolateral aspect of the telencephalic vesicle. The distribution of laminin, collagen-IV, and fibronectin varies in register with these changes in olfactory axon and growth cone behavior. Each of these extracellular matrix molecules influences olfactory neurite outgrowth and growth cone morphology in vitro consistent with its distribution in vivo. The distribution of E-cadherin, L1, neural cell adhesion molecule (NCAM) and the polysialated form of NCAM also varies in register with changes in olfactory axon behavior. In vitro, L1 modulates embryonic olfactory neurite outgrowth and growth cone morphology consistent with its distribution in vivo. Thus, olfactory axon trajectory, fasciculation, and growth cone morphology change within distinct adhesive environments in the nascent olfactory pathway, and some of the molecules that characterize these environments have differential effects upon olfactory neurite growth and growth cone morphology. Consequently, the patterned expression and activity of extracellular matrix and cell surface adhesion molecules may contribute to the initial assembly of the olfactory pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call