Abstract

Potato genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) were expressed in response to pathogen, elicitor, and wounding. HMGR catalyzes the rate-limiting step in isoprenoid biosynthesis leading to accumulation of phytoalexins and steroid glycoalkaloids. Wounding caused increases in HMGR mRNA levels. A rapid and transient peak occurred 30 minutes after wounding, followed by a slower peak at 14 hours; both were correlated with increased enzyme activity. Induction of HMGR mRNA by the soft rot pathogen Erwinia carotovora subsp carotovora or arachidonic acid began 8 hours after challenge and continued through 22 hours. Potato HMGR is encoded by a gene family. An HMGR gene-specific probe was used to demonstrate that one isogene of the HMGR family is pathogen activated and is distinct from isogene(s) that are wound activated. This provides evidence that defense-related increases in HMGR activity are due to mRNA level increases and that HMGR isogenes are activated differentially by wounding or pathogen challenge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.