Abstract
Several types of deletions in mitochondrial DNA (mtDNA) have been recetly identified in various tissues of old humans. In order to determine whether there are differences in the incidence and proportion of deleted mtDNAs in different tissues during human ageing, we examined tha 4,977 bp deletion in mtDNA of various tissues from subjects of different ages. Total DNA was extracted from each of the biopsied tissues and was serially diluted by two-fold with distilled water. A 533 bp DNA fragment was amplified by PCR from total mtDNA using a pair of primers L3304-3323 and H3817-3836, and another 524 bp PCR product was amplified from 4,977 bp deleted mtDNA by identical conditions using another pair of primers L8150-8166 and H13631-13650. The maximum dilution fold of each sample that still allowed the ethidium bromide-stained PCR product (533 bp or 524 bp) in the agarose gel to be visible under UV light illumination was taken as the relative abundance of the mtDNA (wild-type or mutant) in the original sample. By this method, we were able to determine the proportion of deleted mtDNA in human tissues. We found that the 4,977 bp deletion started to appear in the second and third decades of life in human muscle and liver tissues. But the deletion was not detectable in the testis until the age of 60 years. Moreover, the proportion of deleted mtDNA varied greatly in different tissues. Among the tissues examined, muscle was found to harbor higher proportin of deleted mtDNA than the other tissues. The average proportion of the 4,977 bp depleted mtDNA of the muscle from subjects over 70 years old was approximately 0.06%, and that of the liver and the testis was 0.0076% and 0.05%, respectively. These findings suggest that the frequency and proportion of the deleted mtDNA in human tissues increase with age and that the mtDNA deletions occur more frequently and abundantly in high energy-demanding tissues during the ageing process of the human.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.