Abstract

IntroductionEx vivo expansion of umbilical cord blood (UCB) is attempted to increase cell numbers to overcome the limitation of cell dose. Presently, suspension cultures or feeder mediated co-cultures are performed for expansion of hematopoietic stem cells (HSCs). Mesenchymal stem cells (MSCs) have proved to be efficient feeders for the maintenance of HSCs. Here, we have established MSCs-HSCs co-culture system with MSCs isolated from less invasive and ethically acceptable sources like umbilical cord tissue (C-MSCs) and placenta (P-MSCs). MSCs derived from these tissues are often compared with bone marrow derived MSCs (BM-MSCs) which are considered as a gold standard. However, so far none of the studies have directly compared C-MSCs with P-MSCs as feeders for ex vivo expansion of HSCs. Thus, we for the first time performed a systematic comparison of hematopoietic supportive capability of C and P-MSCs using paired samples.MethodsUCB-derived CD34+ cells were isolated and co-cultured on irradiated C and P-MSCs for 10 days. C-MSCs and P-MSCs were isolated from the same donor. The cultures comprised of serum-free medium supplemented with 25 ng/ml each of SCF, TPO, Flt-3 L and IL-6. After 10 days cells were collected and analyzed for phenotype and functionality.ResultsC-MSCs and P-MSCs were found to be morphologically and phenotypically similar but exhibited differential ability to support ex vivo hematopoiesis. Cells expanded on P-MSCs showed higher percentage of primitive cells (CD34+CD38−), CFU (Colony forming unit) content and LTC-IC (Long term culture initiating cells) ability. CD34+ cells expanded on P-MSCs also exhibited better in vitro adhesion to fibronectin and migration towards SDF-1α and enhanced NOD/SCID repopulation ability, as compared to those grown on C-MSCs. P-MSCs were found to be closer to BM-MSCs in their ability to expand HSCs. P-MSCs supported expansion of functionally superior HSCs by virtue of reduction in apoptosis of primitive HSCs, higher Wnt and Notch activity, HGF secretion and cell-cell contact. On the other hand, C-MSCs facilitated expansion of progenitors (CD34+CD38+) and differentiated (CD34−CD38+) cells by secretion of IL1-α, β, MCP-2, 3 and MIP-3α.ConclusionsP-MSCs were found to be better feeders for ex vivo maintenance of primitive HSCs with higher engraftment potential than the cells expanded with C-MSCs as feeders.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-015-0194-y) contains supplementary material, which is available to authorized users.

Highlights

  • Ex vivo expansion of umbilical cord blood (UCB) is attempted to increase cell numbers to overcome the limitation of cell dose

  • CD34+ cells expanded on P-Mesenchymal stem cells (MSCs) exhibited better in vitro adhesion to fibronectin and migration towards SDF-1α and enhanced NOD/SCID repopulation ability, as compared to those grown on C-MSCs

  • We found that C- and CD34+ co-cultures -CD34+ cells expanded on P-MSCs (P-MSCs) could be differentiated into all three lineages (Fig. 1c)

Read more

Summary

Introduction

Ex vivo expansion of umbilical cord blood (UCB) is attempted to increase cell numbers to overcome the limitation of cell dose. Mesenchymal stem cells (MSCs) have proved to be efficient feeders for the maintenance of HSCs. Here, we have established MSCs-HSCs co-culture system with MSCs isolated from less invasive and ethically acceptable sources like umbilical cord tissue (C-MSCs) and placenta (P-MSCs). Under in vivo conditions, HSCs are reliant upon the cytokines and on the varied components from their niche, such as mesenchymal stem cells (MSCs), endothelial cells, osteoblasts, etc., and extra cellular matrix for their maintenance and differentiation [7]. This emphasizes the need for an optimized culture system which closely resembles the in vivo niche and supports the growth of HSCs in vitro. Various cell types from the niche are used for the expansion of HSCs, but MSCs in particular are found to be efficient in sustaining the ex vivo expansion of HSCs [8,9,10,11]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call