Abstract
We review the concept of differentiably simple ring and we give a new proof of Harper's Theorem on the characterization of Noetherian differentiably simple rings in positive characteristic. We then study flat families of differentiably simple rings, or equivalently, finite flat extensions of rings which locally admit p-basis. These extensions are called Galois extensions of exponent one. For such an extension A⊂C, we introduce an A-scheme, called the Yuan scheme, which parametrizes subextensions A⊂B⊂C such that B⊂C is Galois of a fixed rank. So, roughly, the Yuan scheme can be thought of as a kind of Grassmannian of Galois subextensions. We finally prove that the Yuan scheme is smooth and compute the dimension of the fibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.