Abstract
Quasi-Monte Carlo integration is at the core of rendering. This technique estimates the value of an integral by evaluating the integrand at well-chosen sample locations. These sample points are designed to cover the domain as uniformly as possible to achieve better convergence rates than purely random points. Deterministic low-discrepancy sequences have been shown to outperform many competitors by guaranteeing good uniformity as measured by the so-called discrepancy metric, and, indirectly, by an integer t value relating the number of points falling into each domain stratum with the stratum area (lower t is better). To achieve randomness, scrambling techniques produce multiple realizations preserving the t value, making the construction stochastic. Among them, Owen scrambling is a popular approach that recursively permutes intervals for each dimension. However, relying on permutation trees makes it incompatible with smooth optimization frameworks. We present a differentiable Owen scrambling that regularizes permutations. We show that it can effectively be used with automatic differentiation tools for optimizing low-discrepancy sequences to improve metrics such as optimal transport uniformity, integration error, designed power spectra or projective properties, while maintaining their initial t -value as guaranteed by Owen scrambling. In some rendering settings, we show that our optimized sequences improve the rendering error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.