Abstract

Efficient neural networks has received ever-increasing attention with the evolution of convolutional neural networks (CNNs), especially involving their deployment on embedded and mobile platforms. One of the biggest problems to obtaining such efficient neural networks is efficiency, even recent differentiable neural architecture search (DNAS) requires to sample a small number of candidate neural architectures for the selection of the optimal neural architecture. To address this computational efficiency issue, we introduce a novel architecture parameterization based on scaled sigmoid function, and propose a general Differentiable Neural Architecture Learning (DNAL) method to obtain efficient neural networks without the need to evaluate candidate neural networks. Specifically, for stochastic supernets as well as conventional CNNs, we build a new channel-wise module layer with the architecture components controlled by a scaled sigmoid function. We train these neural network models from scratch. The network optimization is decoupled into the weight optimization and the architecture optimization, which avoids the interaction between the two types of parameters and alleviates the vanishing gradient problem. We address the non-convex optimization problem of efficient neural networks by the continuous scaled sigmoid method instead of the common softmax method. Extensive experiments demonstrate our DNAL method delivers superior performance in terms of efficiency, and adapts to conventional CNNs (e.g., VGG16 and ResNet50), lightweight CNNs (e.g., MobileNetV2) and stochastic supernets (e.g., ProxylessNAS). The optimal neural networks learned by DNAL surpass those produced by the state-of-the-art methods on the benchmark CIFAR-10 and ImageNet-1K dataset in accuracy, model size and computational complexity. Our source code is available at https://github.com/QingbeiGuo/DNAL.git.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call