Abstract
In this work, we study the challenging problem of instance-aware human body part parsing. We introduce a new bottom-up regime which achieves the task through learning category-level human semantic segmentation as well as multi-person pose estimation in a joint and end-to-end manner. The output is a compact, efficient and powerful framework that exploits structural information over different human granularities and eases the difficulty of person partitioning. Specifically, a dense-to-sparse projection field, which allows explicitly associating dense human semantics with sparse keypoints, is learnt and progressively improved over the network feature pyramid for robustness. Then, the difficult pixel grouping problem is cast as an easier, multi-person joint assembling task. By formulating joint association as maximum-weight bipartite matching, we develop two novel algorithms based on projected gradient descent and unbalanced optimal transport, respectively, to solve the matching problem differentiablly. These algorithms make our method end-to-end trainable and allow back-propagating the grouping error to directly supervise multi-granularity human representation learning. This is significantly distinguished from current bottom-up human parsers or pose estimators which require sophisticated post-processing or heuristic greedy algorithms. Extensive experiments on three instance-aware human parsing datasets (i.e., MHP-v2, DensePose-COCO, PASCAL-Person-Part) demonstrate that our approach outperforms most existing human parsers with much more efficient inference. Our code is available at https://github.com/tfzhou/MG-HumanParsing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.