Abstract

Aberrations limit optical systems in many situations, for example when imaging in biological tissue. Machine learning offers novel ways to improve imaging under such conditions by learning inverse models of aberrations. Learning requires datasets that cover a wide range of possible aberrations, which however becomes limiting for more strongly scattering samples, and does not take advantage of prior information about the imaging process. Here, we show that combining model-based adaptive optics with the optimization techniques of machine learning frameworks can find aberration corrections with a small number of measurements. Corrections are determined in a transmission configuration through a single aberrating layer and in a reflection configuration through two different layers at the same time. Additionally, corrections are not limited by a predetermined model of aberrations (such as combinations of Zernike modes). Focusing in transmission can be achieved based only on reflected light, compatible with an epidetection imaging configuration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.