Abstract
Quantum circuit Born machines are generative models which represent the probability distribution of classical dataset as quantum pure states. Computational complexity considerations of the quantum sampling problem suggest that the quantum circuits exhibit stronger expressibility compared to classical neural networks. One can efficiently draw samples from the quantum circuits via projective measurements on qubits. However, similar to the leading implicit generative models in deep learning, such as the generative adversarial networks, the quantum circuits cannot provide the likelihood of the generated samples, which poses a challenge to the training. We devise an efficient gradient-based learning algorithm for the quantum circuit Born machine by minimizing the kerneled maximum mean discrepancy loss. We simulated generative modeling of the Bars-and-Stripes dataset and Gaussian mixture distributions using deep quantum circuits. Our experiments show the importance of circuit depth and gradient-based optimization algorithm. The proposed learning algorithm is runnable on near-term quantum device and can exhibit quantum advantages for generative modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.