Abstract
In the present paper we investigate the application of differentiable kernel for generalized matrix learning vector quantization as an alternative kernel-based classifier, which additionally provides classification dependent data visualization. We show that the concept of differentiable kernels allows a prototype description in the data space but equipped with the kernel metric. Moreover, using the visualization properties of the original matrix learning vector quantization we are able to optimize the class visualization by inherent visualization mapping learning also in this new kernel-metric data space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.