Abstract

Solving complex fluid-structure interaction (FSI) problems, which are described by nonlinear partial differential equations, is crucial in various scientific and engineering applications. Traditional computational fluid dynamics based solvers are inadequate to handle the increasing demand for large-scale and long-period simulations. The ever-increasing availability of data and rapid advancement in deep learning (DL) have opened new avenues to tackle these challenges through data-enabled modeling. The seamless integration of DL and classic numerical techniques through the differentiable programming framework can significantly improve data-driven modeling performance. In this study, we propose a differentiable hybrid neural modeling framework for efficient simulation of FSI problems, where the numerically discretized FSI physics based on the immersed boundary method is seamlessly integrated with sequential neural networks using differentiable programming. All modules are programmed in JAX, where automatic differentiation enables gradient back-propagation over the entire model rollout trajectory, allowing the hybrid neural FSI model to be trained as a whole in an end-to-end, sequence-to-sequence manner. Through several FSI benchmark cases, we demonstrate the merit and capability of the proposed method in modeling FSI dynamics for both rigid and flexible bodies. The proposed model has also demonstrated its superiority over baseline purely data-driven neural models, weakly-coupled hybrid neural models, and purely numerical FSI solvers in terms of accuracy, robustness, and generalizability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call