Abstract

Along with neural dynamics (based on analog solvers) widely arising in scientific computation and optimization fields in recent decades which attracts extensive interest and investigation of researchers, a novel type of neural dynamics, called Zhang dynamics (ZD), has been formally proposed by Zhang et al. for the online solution of time-varying problems. By following Zhang et al.’s neural-dynamics design method, the ZD model, which is based on an indefinite Zhang function (ZF), can guarantee the exponential convergence performance for the online time-varying problems solving. In this paper, different indefinite Zhang functions, which can lead to different ZD models, are proposed and developed as the error-monitoring functions for the time-varying reciprocal problem solving. Additionally, for the goal of developing the floating-point processors or coprocessors for the future generation of computers, the MATLAB Simulink modeling and simulative verifications of such different ZD models are further presented for online time-varying reciprocal solving. The modeling results substantiate the efficacy of such different ZD models for time-varying reciprocal solving.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.