Abstract

Archaeological silk provides abundant information for studying ancient technologies and cultures. However, due to the spontaneous degradation and the damages from burial conditions, most ancient silk fibers which suffered the damages for thousands of years were turned into invisible molecular residues. For the obtained rare samples, extra care needs to be taken to accurately identify the genuine archaeological silk remains from modern contaminations. Although mass spectrometry (MS) is a powerful tool for identifying and analyzing the ancient protein residues, the traditional approach could not directly determine the dating and contamination of each sample. In this paper, a series of samples with a broad range of ages were tested by MS to find an effective and innovative approach to determine whether modern contamination exists, in order to verify the authenticity and reliability of the ancient samples. The new findings highlighted that the detected peptide types of the fibroin light chain can indicate the degradation levels of silk samples and help to distinguish contamination from ancient silk remains.

Highlights

  • Silk is one of the most famous biomaterial that widely used for thousands of years in human history

  • Twenty-three unique silk fibroin peptides were detected in the fresh silk sample

  • Eleven peptides belong to the fibroin heavy chain, and the other 12 peptides belong to the fibroin light chain

Read more

Summary

Introduction

Silk is one of the most famous biomaterial that widely used for thousands of years in human history. Raw silk consists of two types of self-assembled proteins: fibroin and sericin. Sericin contains a relatively large amount of hydrophilic amino acids and an unstable amorphous structure[1]. Fibroin consists of two subunits: a light chain (approximately 26 kDa) and a heavy chain (approximately 390 kDa). Twelve domains were identified in the heavy chain molecule that contains several Gly-X repeats, with X being Ala, Ser, Thr and Val[1,2,3,4]. These 12 domains that form the crystalline regions are linked with each other by the amorphous areas. The crystalline regions compose the β-sheet structure in which strong hydrogen bonds and PLOS ONE | DOI:10.1371/journal.pone.0132827 July 17, 2015

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call