Abstract
We study nonlinear waves on a plane-wave background in an erbium-doped fiber system, which is governed by the coupled nonlinear Schrödinger and the Maxwell–Bloch equations. We find that prolific different types of nonlinear localized and periodic waves do exist in the system, including multi-peak soliton, periodic wave, antidark soliton, and W-shaped soliton (as well as the known bright soliton, breather, and rogue wave). In particular, the dynamics of these waves can be extracted from a unified exact solution, and the corresponding existence conditions are presented explicitly. Our results demonstrate the structural diversity of the nonlinear waves in this system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.