Abstract

In this article we analyze conditions for different types of instabilities and complex dynamics that occur in nonlinear two-component fractional reaction-diffusion systems. It is shown that the stability of steady state solutions and their evolution are mainly determined by the eigenvalue spectrum of a linearized system and the fractional derivative order. The results of the linear stability analysis are confirmed by computer simulations of the FitzHugh-Nahumo-like model. On the basis of this model, it is demonstrated that the conditions of instability and the pattern formation dynamics in fractional activator- inhibitor systems are different from the standard ones. As a result, a richer and a more complicated spatiotemporal dynamics takes place in fractional reaction-diffusion systems. A common picture of nonlinear solutions in time-fractional reaction-diffusion systems and illustrative examples are presented. The results obtained in the article for homogeneous perturbation have also been of interest for dynamical systems described by fractional ordinary differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.