Abstract
Retinal ganglion cells comprise about 10 morphological types that also differ functionally. To determine whether functional differences might arise partially from differences in excitatory input, we quantified the distributions of ribbon contacts to four mammalian ganglion cell types [brisk-transient (BT), brisk-sustained (BS), local edge (LE), directionally selective (DS)], comparing small vs. large and "sluggish" vs. "brisk." Cells in guinea pig retina were filled with fluorescent dye, immunostained for synaptic ribbons, and reconstructed with their ribbon contacts by confocal microscopy. False-positive contacts were corrected by performing the same analysis on processes that lack synapses: glial stalks and rod bipolar axons. All types shared a domed distribution of membrane that was well fit by a Gaussian function (R(2) = 0.96 +/- 0.01); they also shared a constant density of contacts on the dendritic membrane, both across each arbor and across cell types (19 +/- 1 contacts/100 microm(2) membrane). However, the distributions of membrane across the retina differed markedly in width (BT > DS approximately BS > LE) and peak density (BS > DS > LE > BT). Correspondingly, types differed in peak density of contacts (BS > DS approximately LE > BT) and total number (BS approximately BT > DS > LE). These differences between cell types in spatial extent and local concentration of membrane and synapses help to explain certain functional differences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.