Abstract

Over the last few years, the electrodynamics of charged inverse micelles (CIMs) in nonpolar liquids and the generation mechanism and properties of newly generated CIMs have been studied extensively for the model system of polyisobutylene succinimide in dodecane. However, the newly generated CIMs, which accumulate at the electrodes when a continuous voltage is applied, behave differently compared to the regular CIMs present in equilibrium in the absence of a field. In this work, we use transient current measurements to investigate the behavior of the newly generated CIMs when the field is reduced to zero or reversed. We demonstrate that the newly generated CIMs do not participate in the diffuse double layer near the electrode formed by the regular CIMs but form an interface layer at the electrode surface. A fraction of the newly generated negative CIMs can be released from this interface layer when the field there becomes zero. The findings of this study provide a better understanding of fundamental processes in nonpolar liquids and are relevant for applications such as electronic ink displays and liquid toner printing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.