Abstract

Gas-liquid foam due to especially large inter-phase contact surface can be used as a coolant. An experimental investigation of the staggered and in-line tube bundles’ heat transfer to the vertically upward and downward laminar foam flow was performed. The experimental setup consisted of the foam generator, vertical experimental channel, tube bundles, measurement instrumentation and auxiliary equipment. It was determined dependency of heat transfer intensity on flow parameters: flow velocity, direction of flow, volumetric void fraction of foam and liquid drainage from foam. Apart of this, influence of tube position in the bundle to heat transfer was investigated. Foam flow structure, distribution of the foam’s local void fraction and flow velocity in cross-section of the channel were the main factors which influenced on heat transfer intensity of the different tubes. Experimental investigation showed that the heat transfer intensity of the frontal and further tubes of the bundles to vertical foam flow is different in comparison with one-phase fluid flow. The results of the experimental investigation are presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call