Abstract

This investigation aimed to optimize the time, pH, pressure, and temperature of sugarcane juice pasteurization and to develop a "ready to serve" bottled sugarcane juice with a high preservation efficiency. Fresh sugarcane juice was extracted from sugarcane genotype Co 89003, and beverage samples were collected using three different treatments: sulphitation of juice with the addition of potassium metabisulphite (KMS-25, 50, 100, and 150 ppm), acidification of juice (addition of citric acid, to reduce the pH of the juice to 4.8, 4.5, and 4.25), and steam treatment of the canes (5 min, 10, and 15 min at 7 psi). In all treatments, the juice was pasteurized in glass bottles @ 65 °C for 25 min and stored at low temperature (5 °C) in pre-sterilized glass bottles. Juice properties such as the ˚Brix, total sugar, pH, and total phenolic content decreased with storage, whereas the microbial count, titrable acidity, and reducing sugar content significantly increased during storage. The addition of KMS, citric acid, and the steam treatment reduced the browning of juice and maintained the color of juice during storage, by inhibiting the polyphenol oxidase enzyme activity, from 0.571 unit/mL to 0.1 unit/mL. Among the selected treatments, sugarcane juice with KMS (100 and 150 ppm) and steam treatment of the canes for 5 and 10 min at 7 psi showed the minimum changes in physico-chemical properties, sensory qualities, and restricted microbial growth. Thesulphitation treatment with pasteurization proved best for increasing the shelf life of sugarcane juice upto 90 days with refrigeration. Similarly, the steam-subjected cane juice (10 and 15 min at 7 psi) could be effectively preserved for upto 30 days with refrigeration, without any preservative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.